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A micromechanically based composite model which we have recently proposed is employed to study large 
plastic deformation and texture evolution in initially isotropic high density polyethylene (HDPE) under 
different modes of straining. Attention is focused on the macroscopic stress-strain response and the evolution 
of crystallographic, morphological and macromolecular textures in HDPE subject to uniaxial tension and 
compression, simple shear and plane strain compression. Comparison of the predicted results with 
experimental observations (e.g. stress-strain measurements, wide-angle X-ray scattering and small-angle 
X-ray scattering studies of deformed material) shows excellent agreement in nearly all respects. 
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INTRODUCTION 

Many polymers can undergo large plastic deformation 
resulting in high anisotropy due to preferential orientation 
(texturing) of macromolecules and morphology. This is 
particularly true for semicrystalline polymers, which 
can be processed into fibres and ribbons with very 
attractive mechanical properties. Plastic deformation of 
semicrystalline polymers, in particular polyethylene, 
has been studied intensively by experiment from the 
viewpoint of changes in morphology as well as 
characterization of mechanisms of deformation and 
their relative resistances 1-~1. The principal mechanisms 
involved in the plastic deformation of semicrystalline 
polymers are crystallographic in nature, albeit very 
complex when considered in the context of the local 
morphology. The specific mechanisms involved in plastic 
deformation of semicrystalline polymers have been 
reviewed by many investigators; among those, the reviews 
by Bowden and Young 4 and by Haudin 5 are noteworthy. 
Many of these investigations of the mechanisms of 
deformation have been concerned with high density 
polyethylene (HDPE) because of its relatively simple 
structure and its high degree of crystallinity. The plastic 
deformation mechanisms of highly textured HDPE 
prepared by plane strain compression in a channel-die 
as a convenient approximation in bulk to a single 
crystalline material were studied recently in great detail 
by Bartczak et al. 6. The deformation processes of HDPE 
were investigated in a wide variety of loading conditions 
such as uniaxial tension 7, uniaxial compression s, simple 
shear 9'1° and plane strain compressionlL On the other 
hand, there have been relatively few studies aimed at the 

t Present address: Department of Applied Mechanics and Engineering 
Sciences, University of California, San Diego, La Jolla, CA 92093, USA 
$ To whom correspondence should be addressed 
§ Present address: Centre of Molecular and Macromolecular Studies, 
Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland 

numerical simulation of large plastic deformation and 
texture evolution in semicrystalline polymers, in a 
mechanistically faithful manner. 

The morphology of undeformed semicrystalline 
polymers, when melt crystallized, is often spherulitic 12'13. 
A spherulite consists of a radial arrangement of broad 
thin crystalline lamellae separated by amorphous layers. 
This mesostructural unit is shown schematically in 
Figure la. The numerous studies of plastic straining of 
semicrystalline polymers in extensional flow have now 
established that important morphological reorganization 
occurs as a result of the deformation, with the structure 
changing from spherulitic to a highly oriented one 
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Figure 1 Schematic representations of(a) spherulite (after ref. 13) and 
(b) composite inclusion 
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consisting of alternating crystalline and amorphous 
layers. At the same time, crystallographic axes of 
the crystalline lamellae and macromolecular chains 
of the amorphous component rotate and tend to 
align preferentially with respect to principal axes of 
macroscopic deformation. Thus it has been established 
that, when plastically deformed, semicrystalline polymers 
develop three important types of texture: (1) a 
crystallographic texture, due to preferential orientation 
of crystallographic axes in the crystalline lamellae; (2) a 
morphological texture, due to preferential orientation 
of the normals to the broad lamellar faces; and 
(3) a macromolecular texture in the amorphous phase, 
promoted by molecular alignment with the direction of 
maximum stretch. The evolution of texture with large 
plastic deformation strongly affects the macroscopic 
mechanical behaviour of semicrystalline polymers. For 
instance, a strong textural hardening is observed in 
tension but not in simple shear of HDPE 7'9'1°. 

We have developed a micromechanically based model 
of large plastic deformation in semicrystalline polymers 
to predict both the evolution of textural anisotropy 
and macroscopic mechanical behaviour under different 
modes of straining 14. The aim of this paper is to 
report the progress we have made in developing the 
model and illustrating its applicability by comparing 
numerical predictions with a wide variety of experimental 
observations. In our viscoplastic composite model, we 
neglect elasticity and pressure sensitivity of deformation 
resistance, but account for the mechanically coupled 
response of both crystalline and amorphous phases in 
contributing to large plastic deformation. Constitutive 
models of plastic deformation in each phase are based 
on well-established microstructural mechanisms and 
their relative resistances. An aggregate of two-phase 
composite inclusions, each consisting of a crystalline 
lamella attached to its corresponding amorphous layer, 
as shown schematically in Figure lb, is used to 
model semicrystalline polymers. This composite inclusion 
constitutes the basic structural element of the semicrystalline 
polymer - -  whether in spherulitic or in the eventual 
highly aligned morphology. Each of the two components 
of the composite inclusion is assumed to deform 
homogeneously. Moreover, crystalline/amorphous interface 
compatibility and equilibrium are satisfied throughout 
the entire deformation history. In the proposed model, 
a so-called Sachs-like aggregate interaction law is 
employed to relate the volume-average deformation and 
stress of a composite inclusion to the respective 
macroscopic fields, in preference to a so-called Taylor-like 
interaction law. 

HDPE was chosen as a model material for the 
present study because of the large amount of existing 
experimental data and relatively high degree of 
understanding of the plastic deformation mechanisms for 
this material. However, the operational procedures 
developed are equally well adaptable to other semi- 
crystalline polymers with different crystal structures, with 
glassy amorphous phases, or both. Undeformed HDPE 
has a spherulitic morphology with spherical packing of 
crystalline lamellae separated by layers of amorphous 
phases. The thickness of the lamellar inclusions ranges 
from 50 to 250 A, and the lateral dimensions range from 
1 to 50/~m. HDPE crystals have an orthorhombic 
structure. At room temperature, the amorphous phase of 
HDPE is in the rubbery regime 15. The crystalline phase 

of HDPE can deform plastically by crystallographic slip, 
twinning and stress-induced martensitic transformations. 
However, each of these mechanisms leaves the material 
direction parallel to the crystallographic chain direction 
inextensible, so they provide fewer than the five 
independent deformation modes required to accommodate 
arbitrary plastic deformation 3'4. Plastic deformation of 
the crystalline phase is in general accompanied by 
deformation of the amorphous phase. In the absence of 
cavitation, the amorphous phase deforms primarily by 
interlamellar shear 8' 1 o.11. While interlamellar separation 
has also been suggested 16'1v, we do not consider that 
here as an acceptable mode for bulk deformation without 
cavitation. We note, however, that in cases where the 
initial angle between the chain direction and the lamellar 
normal is not zero, and the lamella can thicken by chain 
slip, a small amount of kinematically linked thickening 
of the amorphous layer is then possible. This will 
result in a small amount of interlamellar separation 
which is routinely taken into consideration in our 
model. The simultaneous activity of several deformation 
mechanisms allows the initial structure to be transformed 
in a continuous manner to any and all of the final 
oriented states. Thus, we consider the often observed 
transitional cavitational processes (micronecking, etc.) 
not as fundamental, but as inessential artifacts of 
tensile deformation. We have used the newly developed 
composite model to simulate stress-strain response and 
texture evolution during deformation of HDPE to 
large plastic strain under several different modes of 
straining. Predicted results are compared to experimental 
observations of earlier investigations as well as our 
own more recent results reported in greater detail 
elsewhere 6, s, 1 o, 11. 

Operational notation used in this paper is based on 
the following conventions. Scalars are given in italics (A, 
a, ~), vectors are lower case bold-face (a) and second-order 
tensors are upper case bold-face (A). The superscripts I, 
c and a designate inclusion, crystalline lamella and 
amorphous layer, respectively. When required, repeated 
Cartesian subscripts are summed from 1 to 3. Greek 
subscripts range from 1 to 2. 

MODEL DESCRIPTION 

Basic assumptions 
To model large strain plastic deformation and texture 

evolution in semicrystalline polymers, we neglect 
elasticity and account for intrinsic non-linear viscoplastic 
behaviour of both crystalline and amorphous phases. 
The decision to neglect elasticity is motivated both 
by the increased simplicity of the constitutive modelling 
and by the argument that at very large strains, 
elasticity neither contributes significantly to overall 
deformation nor has much effect on the development of 
texture. Incompressibility is assumed in both phases. We 
assume that the basic element constituting semicrystalline 
polymers is a two-phase composite inclusion represented 
by a crystalline lamella and its associated amorphous 
layer. Due to their large aspect ratio, the composite 
inclusions are modelled as infinitely extended 'sandwiches' 
with a planar crystalline/amorphous interface (Fioure lb). 
Each composite inclusion is characterized by its interface 
normal, n I, and the relative thicknessesf a andf  ~ ( = 1 _fa) 
of the amorphous and crystalline phases, respectively. 
The relative thickness fa also represents the inclusion 
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volume fraction of the amorphous phase, which is 
assumed to be constant and identical for all inclusions. 
Furthermore, each composite inclusion is presumed to 
have equal volume and initial thickness. Parenthetically, 
we note that one of our associated recent experimental 
studies ~ demonstrates conclusively that, under certain 
circumstances, the interface between the crystalline and 
amorphous phases can translate during morphological 
restructuring purely in response to reduction of interfacial 
free energy. These effects are not incorporated into our 
model, with certain consequences on our predictions 
which we will point out. We assume that the material 
interface between the two components of the inclusion 
remains distinct throughout and does not migrate. In the 
following, we will discuss the constitutive models for 
crystalline and amorphous phases of the H D P E  and the 
behaviour of the composite inclusion. Then, the local 
interaction law and solution procedure for the proposed 
composite model will be discussed briefly. We then apply 
the model to predict stress-strain behaviour and texture 
evolution of H D P E  under different modes of straining 
and compare the predicted results with experimental data. 

Constitutive relations 
Crystalline phase. Mechanisms involved in the 

plasticity of crystalline lamellae of semicrystalline 
polymers are summarized in the reviews by Bowden 
and Young 4 and by Haudin 5. These experimentally 
observed mechanisms are: crystallographic slip, twinning 
and stress-induced martensitic transformations. The 
crystal lattice of H D P E  is orthorhombic with lattice 
parameters a = 7.4 A, b =4.93/~ and c=2.54 A, where c 
is the crystallographic axis coinciding with the chain 
direction. Experiments on H D P E  have established that 
crystallographic deformation occurs in the (100)[001], 
(010)[001], {110}[001], (100)[010], (010)[100], and 
{l l0}(1T0) slip systems, and in the (110) and (310) 
twinning systems. The stress-induced martensitic trans- 
formation from the orthorhombic to the monoclinic 
lattice in H D P E  was also detected by X-ray studies. All 
of these mechanisms, however, leave the molecular chains 
inextensible. In this paper the mechanical behaviour and 
texture evolution for initially isotropic H D P E  subject to 
uniaxial tension and compression, simple shear and plane 
strain compression are studied. For all of these modes of 
deformation, there is no experimental evidence for the 
occurrence of twinning or martensitic transformation in 
anything more than trace amounts 8'1°'1~, and then 
occurring only in the very late stages of deformation. 
Therefore, we consider crystallographic slip as the only 
mechanism that accomplishes plastic straining in the 
crystalline lamellae. Two slip categories operate in the 
orthorhombic unit cell of H D P E  crystals: chain slip, with 
its slip direction parallel to the chain direction, such as 
(100)[001], (010)[001] and {110}[001] slip systems; and 
transverse slip, with its slip direction perpendicular to the 
chain direction, such as (100)[010], (010)[100] and 
{110}(150) slip systems. These slip systems comprise 
only four linearly independent systems. The addition of 
twinning and martensitic transformation does not 
provide the missing degree of freedom due to chain 
inextensibility, but merely aids transverse slip in achieving 
transverse shape changes. 

The resistances to plastic flow of these slip systems can 
be measured experimentally using highly textured quasi- 
single-crystalline H D P E  obtained by subjecting initially 

Table 1 Slip systems of HDPE and their corresponding normalized 
initial resistances used in the current study 

Normalized resistance O~/ro 

Experimental Current 
Slip system evidence a study 

(100) [-001] ~ l ~ 1 
Chain slip (010) [001] > 2 2.5 

{110} [001] >2 2.5 
(100) [010] 1.66 1.66 

Transverse slip (010) [100] >2 2.5 
{ 110} (li0) 2.2 2.2 

a Measured by Bartczak et  al. 6 

spherulitic material to large plane strain compression in 
a channel-die is. Recently, Bartczak et al. 6 have found 
that the easiest slip system in such quasi-single-crystalline 
H D P E  is the chain slip (100)[001] and that the other 
slip systems listed above have higher plastic resistances. 
Based on their experiments, possible slip systems in the 
crystalline phase of H D P E  are summarized in Table 1, 
with their measured or estimated initial shear resistances 
normalized to ~0, the resistance (at room temperature) 
of the easiest chain slip system, (100)[001]. 

To derive a constitutive law for the crystalline lamella, 
we first introduce a viscoplastic power law 18-2° relating 
the shear rate ~" of a given slip system ~, to the 
corresponding resolved shear stress, r ", on the same slip 
system as: 

= 9 o E  E (1) 

where $0 is a reference strain rate (of the order of 
10 -3 s-1), n ¢ is the non-linear rate exponent (the inverse 
rate sensitivity coefficient) and g~ is the shear resistance 
of slip system ct. In the present study we neglect strain 
hardening and normal pressure effects on the shear 
resistance, so 9~ remains constant during the deformation. 
The neglect of intrinsic strain hardening in the crystalline 
lamellae is justified because they are very thin and cannot 
retain dislocations in them. The plastic shear rate on a 
slip system is known to be temperature dependent. We 
consider this temperature dependence to reside in the 
reference strain rate ~0, but will not discuss its form 
further. 

Because of chain inextensibility and the associated flow 
rule embedded in equation (1), the shear rate of each slip 
system is independent of the normal stress component in 
the chain direction 21. To cope with these problems 
we have introduced some special procedures. Let us 
denote by S c*, a special modification of the deviatoric 
Cauchy stress tensor in the crystalline lamella, S c, 
with zero normal component in the chain direction 

c* 14. (i.e. Sis cic i = 0) . The resolved shear stress in slip system 
can then be expressed as z~= ¢* ~ S~j R~j, where R ~ is the 

symmetric, traceless Schmid tensor of stress resolution 
associated with the slip system or. The components of the 
symmetric part of the Schmid tensor, R~, can be defined 
as R u -  ~(s~ nj + n i ss), where s~ and n~ are the components 
of unit vectors in the slip direction and the slip plane 
normal, respectively, of the given slip system ~t. 

The plastic strain-rate tensor, D ~, resulting from the 
contributions of all K active slip systems in the crystalline 
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Figure 2 Kinematics of the various components of crystallographic 
slip and spin: (a) initial undeformed lattice; (b) plastically sheared lattice; 
(c} plastically sheared and rotated lattice 

lamella is given by: 

r 1 rat nO- 1/2at O at ~'e* 
Dpj= ~o ate=, g~ Ig-;I ",j"k, yk, (2) 

Relation (2) represents a three-dimensional constitutive 
law for the plastic behaviour of the crystalline lamellae 
through active slip systems and accounts for chain 
inextensibility, i.e. Di~cicj=O, by virtue of the special 
geometrical restrictions RTjcic j = 0 present on all available 
slip systems ~, as discussed above. 

The principal cause of crystallographic texture 
development is lattice rotation resulting from the change 
of external shape in relation to the material lattice. We 
call the rate of lattice rotation, W*, the lattice spin tensor. 
The concepts are illustrated schematically in Figure 2. 
Figure 2a illustrates a reference material element in a 
crystalline domain, along with the unit vectors nat and sat 
representing slip plane normal and the slip direction of 
the slip system ~. Without loss of generality, the 
instantaneous configuration can be taken as the external 
shape reference. At fixed lattice orientation the rate of 
crystallographic shearing of a magnitude ~" on system a 
generates a strain rate ~atR~ and a plastic spin ~'A~j where 

a t _ _ l  ~ ac at at Au-~(s in j -n~s j )  is the skew part of the Schmid tensor 
for slip system a, introduced above. The resulting 
(intermediate) deformed configuration is shown in 
Figure 2b, where it is noted that the total crystallographic 
strain rate D ° and plastic spin W p are given by the sum 
over all slip systems K, and represented in purely 
kinematical form as: 

K K 

D~.= .~ ~ .~ ,j ~, ~Rij  and W.P.=,j ~ ?A~j 
• = I  ~ = 1  

We note that homogeneous slipping alone, in general, 
alters lengths and orientations of material line elements 
represented by fiducial lines and angles drawn on the 
element (e.g. 'diagonals' of the material element), but 
leaves the lattice unchanged. Lastly, the intermediate 
configuration is subject to a strain free rigid body rotation 
rate W*, which carries both material line elements and 
the lattice vectors to their final orientations. This is shown 
in Figure 2c. 

The crystalline velocity gradient L ~ bringing material 
line elements directly from the initial to the final 
configuration is: L¢=D¢+W° ,  as also shown in 
Figure 2. The skew part of this tensor W ~ is the sum of 
the skew parts due to plastic spin and rigid body spin: 

W¢= W p + W*. Thus, the lattice spin controlling the rate 
of change of crystallographic axes, relative to the initial 
reference fiducial body axes, can be expressed in terms 
of total crystallographic spin and the slip rates by: 

K 

W*.= W.C._ W.p.- c .at at ,j . . , j  . . , j - W i j -  ~ 3' Aij (3) 
ot= l 

The rate of change of crystallographic axes, for instance 
the chain axis e, can be expressed in component form as: 

= W*cj (4) 

Amorphous phase. Several theories have been proposed 
for the plastic shear resistance of amorphous polymers 
in their glassy state zz'z3. In the theory proposed by 
Argon za, plastic flow is considered governed by repeated 
nucleation of local shear transformations consisting 
of the rotation of short molecular segments under 
stress*. At room temperature, the amorphous phase of 
semicrystalline polymers can be in the glassy state, such 
as in poly(ethylene terephthalate) (PET) and Nylon 6, or 
in the rubbery state, such as in HDPE. While the 
theory of Argon is intended only as an isostructural 
theory for the glassy state - -  well below the glass 
transition temperature (Tg) - -  we will apply a power-law 
approximation of it to the rubbery state for HDPE. The 
simple viscoplastic relation that we propose to relate the 
plastic shear rate ~" and the effective shear stress z" in 
the amorphous phase of HDPE is of the form: 

) (5) 

where ~o is a reference strain rate and n a is the rate 
exponent. Here, without loss in generality, we choose the 
reference strain rate equal to that of the crystalline phase. 

For simplicity and convenience, we set the rate 
exponent in the amorphous phase, n ~, equal to n c, that 
of the crystalline phase, so n ~ = n c = n. The reference shear 
strength "Co~-g (1°°)[°01] is the initial shear resistance of 
the easiest slip system in the crystalline phase. Thus, aro 
is the reference shear strength of the amorphous 
domain, with the parameter a characterizing the relative 
magnitude of the initial deformation resistance in the 
amorphous phase in comparison to that of the easiest 
slip system in the crystalline phase. 

Once the barrier to the chain motion is overcome, the 
molecular chains of the amorphous phase tend to align 
in the direction of the maximum plastic stretch, resulting 
in directionally specific changes in the resistance to plastic 
flow. To derive a three-dimensional constitutive relation 
for the amorphous phase, we neglect elasticity and 
introduce a back stress tensor, H ", in the flow rule, as 
was done in the work of Boyce et al. 25. The back stress 
accounts for the strain hardening produced by molecular 
alignment. Let D a and S" be the strain rate (stretching) 
and the deviatoric Cauchy stress, respectively, present in 
the amorphous phase. The driving stress (often called 
effective stress) within the amorphous phase is then 

* New molecular segmental level simulations of plastic deformation in 
glassy polymers, performed by Mort et al. 24 have now established that 
the actual mechanism of this deformation is very different from what 
was conceived by Argon 23. Nevertheless, the functional form of the 
constitutive relation arising from this early work, as also amended by 
Boyce et al. 25, remains as a very accurate formulation of the viscoplastic 
response of these materials 

3 5 5 8  POLYMER,  1993,  Vo lume  34, Number  17 



Plastic deformation and texture evolution in HDPE. B. J. Lee et al. 

1 0  ' ' ' ' I ' ' ' ' I ' ~ ' ' / ' l  ' ! ~ / / ~ '  

/ / / 

i[11 II ..."" //f' 

o-a 
~So 5 

0 i L L I l I L I ' I , i , , I i ~ t I 

0.0 0.5 1 . 0  1.5 2 . 0  

£ ( Z  

Figure 3 Normalized axial stress, t#/ro, as a function of the axial 
logarithmic strain #, for several combinations (a, Cg/zo, N) of a pure 
amorphous polymer of the type modelled here, when deformed 
homogeneously in uniaxial tension at a fixed reference strain rate %. 
(A) a = 1.2, CR/zo -- 0.2, N = 49; (B) a = 1.2, CR/Zo = 0.2, N = 20; (C) a = 1.2, 
Cg/zo=0.2, N=200; (D) a=l.2, CR/ZO=0.5, N=49; (E) a=0.8, 
CR/ro =0.2, N=49 

defined as S " - H  a. The resolved shear stress z a is defined 
as a norm of the driving stress by: 

- -  1 a a a a 
"ca  - -  N / ~ ( S i j  - -  H i j ) ( S i j  - H i j  ) ( 6 )  

Generalizing equation (5), the three-dimensional power- 
law constitutive relation which we propose for the 
rubbery amorphous polymer is: 

/ /  "ca  ~ n  a - 1 / / s . a . _  H~.\ 

Using the eight-chain network model of rubber elasticity 
recently proposed by Arruda and Boyce 26, the back stress 
is conveniently expressed as: 

H~..=__ ~ - 1  (Baj--½Ilt}ij) (8) 
'J 3 

where N is the number of rigid links between 
entanglements and is approximately proportional to the 
square of the tensile locking stretch, C* is the rubbery 
shear modulus, B a is the so-called left Cauchy-Green 
deformation tensor obtained from the deformation 

a - -  a a gradient tensor F a of the amorphous phase (B~j- FikFjk), 
Ix = Bg"g, 6o is the Kronecker delta and Aa is the Langevin 
function defined by L~°(fl) = coth(fl)- 1/fl = x/~l/3S, with 
symbolic inverse function L~- l(x/~l/3S )-- ft. 

For homogeneous uniaxial tensile extension at constant 
axial strain rate chosen so that ~a__ ~o, the uniform axial 
component of the Cauchy stress, aa, versus logarithmic 
strain curve is shown in Figure 3 for n--9, for several 
different combinations of N, CR/Zo and a. The locking of 
the amorphous polymer due to molecular alignment is 
shown by a dramatic increase in required stress. The 
relative strength parameter a scales the initial flow stress, 
which is also proportional to the nth root of strain rate; 
a change in the number of rigid links N is primarily 
accompanied by a change in the final locking stretch; 
and a change of normalized rubbery shear modulus CR/"cO 
is accompanied by a change in hardening slope of 

the stress-strain curve. The simple eight-chain model 
accurately captures the sensitivity of large deformation 
rubbery response to states of deformation other than 
uniaxial tension 26. 

Composite inclusion 
In the present work, the composite inclusion is treated 

using a generalized three-dimensional lamination theory, 
such that the deformation and stress within each phase 
are uniform (but not necessarily identical) and satisfy the 
constraints of interface compatibility and equilibrium. 
Let D ~ and W t be the inclusion-averaged strain rate and 
spin, respectively, that can be expressed as: 

1 a a Dij =f  Dij + (1 -fa)D~j (9a) 

and 
1 _ _  a a W q - f  Wij+(1--fa)wic j (9b) 

where superscripts a and c denote the uniform quantities 
within the amorphous and crystalline phases, respectively. 
Similarly, the inclusion-averaged deviatoric stress, S ~, can 
be written as: 

1 _ _  a a Sij-  f Sij + (1 -fa)si~ (9c) 

We assume that there is no relative slippage at 
the crystalline/amorphous interface of each inclusion, 
imposing continuous velocity across each such crystalline/ 
amorphous interface. Let el denote local orthonormal 
Cartesian basis vectors fixed to inclusion I, with e~--#. 
Relative to this basis, the compatibility conditions, in 
conjunction with incompressibility in both phases, 
require the following continuity conditions on strain rate 
and spin components: 

i . . . .  (10a) D~ - D~ - D~ 
1 c D3a =D33 =O~3 (10b) 

W I . . . .  (10c) 2 - W l z - W 1 2  

where the Greek subscripts ct and fl range from 1 to 2. 
The requirement of shear traction equilibrium across 

the interface can be expressed in terms of stress deviator 
components relative to the local Cartesian basis vectors 
ell by: 

S'~3 = S~¢3 = S~3 (1 la) 

Since we assume incompressibility and neglect pressure 
sensitivity of deformation, the normal (n ~ or e~) 
component of interface traction can be equilibrated by 
assuming that any jump of the normal component of 
deviatoric stress is balanced by a corresponding jump in 
the pressure as: 

S"33- pa= S~3a-PC (llb) 

where pa and pC are the pressure in the amorphous layer 
and crystalline lamella, respectively. 

Interaction law and solution procedure 
A local/global interaction relation must be imposed 

to relate the average mechanical behaviour of each 
composite inclusion to the macroscopic mechanical 
behaviour of the medium within which it resides. The 
collective plastic deformation of aggregates, such as 
grains in a polycrystalline assembly, has been the 
subject of many studies in crystal plasticity and 
mechanics of heterogeneous plastic media. Since exact 
solutions satisfying all local conditions of equilibrium 
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and compatibility are intractable, a number of approxi- 
mate approaches have been developed throughout the 
years. The most prominent of these are the Sachs model 27, 
the Taylor model 2a and the self-consistent model 29. In 
the Sachs model, local and global equilibrium are satisfied 
trivially by considering the stress as uniform in all 
component parts, global compatibility is enforced as a 
global volume average, while the local compatibility of 
inclusion deformation with that of its surroundings 
is not addressed. In the complementary Taylor model, 
compatibility of deformation is satisfied everywhere by 
considering the local deformation to be related to the 
global one in an affine sense, global equilibrium is satisfied 
only as a global volume average, and local equilibrium 
of the inclusion with its surroundings is unaddressed. The 
self-consistent model was first developed to determine 
the properties of heterogeneous elastic media, and was 
generalized later in an approximate sense to viscoplastic 
behaviour. In the self-consistent models, the field 
solution for a generic ellipsoidal inclusion embedded 
in a homogeneous 'matrix' medium having as yet 
undetermined properties and subject to uniform remote 
fields is first obtained. When the matrix medium is linear 
elastic (or linear viscous), Eshelby 3° showed that the 
resulting fields within any ellipsoidal inclusion are 
homogeneous. Finally the volume averages of all such 
ellipsoidal inclusion fields are equated to the respective 
distant mean fields self-consistently to implicitly establish 
the properties of the effective medium. 

In the plasticity of polycrystalline cubic metals, the 
Taylor model has proved to be the most successful 2° in 
predicting the plastic resistance of the polycrystal from 
the plastic resistance of the individual grains. In 
comparison the Sachs model, while being far easier to 
implement, has significantly under-predicted the ratio of 
polycrystal to single crystal deformation resistance 
because of its lack of intercrystalline deformation 
constraints. The self-consistent model, which is the most 
elegant and appealing, is difficult to implement in 
general in a viscoplastic material. Moreover, it lends 
itself best to relatively equi-axed morphology and 
not to the elongated sandwich plate morphology of the 
crystalline lamellae and amorphous regions making up 
a semicrystalline polymer. In the past, two of us 21 have 
successfully applied a modified Taylor formulation to an 
idealized model of HDPE consisting of crystalline 
aggregates alone. Textures were successfully predicted for 
several different modes of straining, but the texture 
evolved much too rapidly with deformation, and 
predicted aggregate plastic stress-strain response did 
not compare well with corresponding experimental 
measurements. We had also previously attempted to 
obtain more realistic stress-strain curves by incorporating 
an amorphous material component into a generalized 
Taylor model, using constitutive properties similar to 
those given in the section 'Constitutive relations '31,32. 
However, it became apparent that in order to achieve 
realistic stress-strain response, unrealistic properties 
needed to be assigned to the amorphous component, 
which then significantly degraded the texture-predicting 
ability of the model 31,32. The severe constraint of 
crystalline phase inextensibility particularly manifested 
itself in those composite inclusions for which the inclusion 
normal n ~ became nearly parallel with the chain axis c 
during the course of deformation 14. As a result, it was 
concluded that since local deformation within the 

composite inclusion is already constrained, due to both 
crystalline phase inextensibility and to the compatibility 
enforced between the crystalline and amorphous layers, 
it is less important to further constrain the deformation 
of the composite inclusion by enforcing additional local 
compatibility restrictions between the inclusion and the 
matrix, than it is to provide local equilibrium of the 
composite inclusion with its surroundings. Consequently, 
we have developed a modified Sachs-like interaction rule 
for each composite inclusion which satisfies equilibrium, 
both strongly within the inclusion and somewhat less 
strongly between the inclusion and its surroundings, but 
satisfies compatibility only as a global volume average 
of the locally compatible deformations and spins 
of the individual composite inclusions. In our new 
proposed composite model, a Sachs-like interaction law 
is employed. As demonstrated in reference 14, the Sachs 
interaction law for composite inclusions is applicable to 
the study of large plastic deformation and texture 
evolution in semicrystalline polymers under different 
loading conditions. 

Consider an aggregate of composite inclusions subject 
to macroscopically applied boundary conditions consistent 
with homogeneous response. Let us denote by ~, 1) and 
V¢ the macroscopic deviatoric Cauchy (true) stress, 
the macroscopic strain rate, and the macroscopic 
spin, respectively. Relative to the fixed macroscopic 
orthonormal basis vectors ~, specific components of S~j, 
/)~j and ~ i  must be prescribed in accordance with a 
well-posed boundary value problem. For example, in 
the case of constant strain rate uniaxial tension or 
compression along the ~3 direction, the prescribed 
components of g, I) and "tY¢, relative to the basis vectors 
ei, are: 

/)33 ~0 (12a) 

$22-g , ,  =$12 = E,a = $23 =0 (12b) 

and 

V¢=O (12c) 

The other (five) (work-conjugate) components of S and 
I) which are not prescribed must be obtained from 
conditions of global compatibility and equilibrium. 

In applying the Sachs inclusion model, the inclusion- 
averaged deviatoric stress in each inclusion, S ~, is 
approximated as constant, and equal to the macroscopic 
deviatoric stress, ~, imposed on the aggregate such that: 

Sl=g (13a) 

To complete the interaction law of a Sachs inclusion 
model for large deformation, we simply equate the 
inclusion-averaged spin, W ~, with the macroscopic one, 

W ~ =~7¢ (13b) 

The self-consistent conditions for global equilibrium and 
compatibility within the aggregate aa are that suitable 
volume averages of local fields equal the corresponding 
macroscopic quantities. The Sachs inclusion model of 
equations (13a) and (b) satisfies the following requirements 
trivially: 

(S ~) =g  (14a) 

(W~) =~7# (14b) 

where (.> designates the volume average over the 
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Figure 4 Pole figures from 244 randomly oriented composite inclusions 
represent the initially isotropic texture for undeformed HDPE: 
(a) crystallographic texture; (b) distribution of lamellar normals 

aggregate. The remaining self-consistent conditions 
provide global compatibility, i.e. the volume average of 
the inclusion strain rate must equal the macroscopic 
strain rate: 

<D'> =1) (14c) 

In practice, the volume integrals indicated in equations 
(14a)-(c) are replaced with integrals over the collection 
of inclusions representing the material, and the volume- 
averaged fields within each composite inclusion are 
weighted equally when computing the macroscopic 
average fields. 

When using the Sachs inclusion interaction law, 
equations (14a) and (c) can be used to obtain the five 
components of ~ and I) not specified in the definition of 
the macroscopic boundary value problem. Full details of 
the solution procedure are beyond the scope of this paper 
but can be found in reference 14. To simulate the large 
plastic deformation of semicrystalline polymers, the 
evolution of texture in these materials has to be taken 
into account, and is, of course, of primary interest 
here. Procedures for updating the crystallographic, 
morphological, and macromolecular textures during the 
numerical simulation can also be found in reference 14 
and will be omitted here. 

Parameter selection 
Consider an aggregate consisting of M composite 

inclusions as described above. This aggregate may 
represent an isotropic or even oriented semicrystalline 
polymer depending on the initial orientation distribution 
assigned to this set of inclusions. We consider an 
initially isotropic HDPE and neglect interactions between 
spherulites so that the initial spherulitic morphology is 
not accounted for explicitly. However, it is possible 
to generate an isotropic texture corresponding to 
a 'quasi-spherulitic' structure. In the modelling of 
initially isotropic HDPE, an aggregate consisting of 
244 composite inclusions is employed.-The initial 
distributions of crystallographic orientations given bythe 

(002) pole figures (or chain axis, e) and (200) pole figures 
(or a-axis) are shown in equal area stereographic 
projection in Figure 4a for these 244 inclusions. Since the 
distributions of (002) and (200) pole figures are essentially 
uniform [also true for the (020) pole figure due to the 
orthogonality of crystal axes], the initial crystallographic 
texture of the aggregate can be considered as isotropic. 
It has been reported 3.-36 that for spherulitic polyethylene, 
the chain axis c and the lamellar normal n ~ are not parallel. 
The initial angle between these two axes varies between 
17 ° and 40 °. An isotropic initial distribution of lamellar 
normals can then be obtained by assuming an initial 
angle of 30 ° between c and the corresponding n i, along 
with a random projection of n I in the local crystal plane 
spanned by a and b. The initial distribution of lamellar 
normals for these 244 inclusions is shown in Figure 4b. 

For the (common) strain-rate sensitivity exponent, we 
use the value n=9  in each phase, based on the 
measurements of macroscopic rate sensitivity in HDPE 
reported by G'Sell and Dahoun 37. A typical level of 
crystallinity of HDPE is ~70%; therefore, in the 
following applications, fa  =0.3 is used in the modelling 
of HDPE. We first apply the proposed composite model 
to the aggregate consisting of 244 composite inclusions 
to predict the uniaxial reference strength, 6o, of initially 
isotropic HDPE in the following power-law creep 
equation: 

freq'~ . 
) ( st 

3 - -  - -  where /):q= -~aDuDu and a < q = ~ s  are the 
macroscopic equivalent uniaxial tensile strain rate and 
stress, respectively. This uniaxial reference strength, #o, 
normalized by the resistance of the easiest slip system, 
z 0, is plotted in Figure 5 as a function of the strength 
coefficient a of the amorphous domain. It is emphasized 
that the macroscopic reference strengths shown in 
Figure 5 are isostructural, reflecting no alterations due to 
deformation-driven texturing or molecular orientation. 
Since #o depends parametrically on the strength 
coefficient a of the amorphous domain, and since the 
amorphous interlamellar material is itself inaccessible to 

7-o 

0 l i ~ l l i l i l l l l  

1.0 1.5 
a 

2.0 

Figure 5 Normalized uniaxial reference strength, #o/Zo, as a function 
of the amorphous domain strength coefficient a 
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mechanical testing, we use experimental measurements 
and the model to infer an appropriate value for a. 

In the literature, experimentally based estimates of the 
resistance of the easiest slip system, g ,  OO~[OO~l, at room 
temperature range between %=7.2 MPa (ref. 6) and 
ro=9.0MPa (ref. 17). A partial explanation for this 
difference is the fact that interpretation of experimental 
measurements of z0 is complicated by the presence of 
amorphous material, rendering even highly textured 
material a composite. At room temperature, the measured 
tensile yield strength 7,s of initially isotropic, spherulitic 
HDPE is ~27 MPa. In order to obtain a reasonable 
correlation of yield strength in the aggregate with chain 
slip resistance, Oo/Zo should have a value between 3.0 and 
3.75. Thus, based on Figure 5, in the following 
applications, the amorphous domain strength coefficient 
a is chosen to be 1.2 (see ref. 14). We also choose 
the number of rigid links as N = 1 2  and rubbery 
modulus Ca=0.1z0 for the amorphous phase so that the 
predicted macroscopic stress-strain curve of the HDPE 
in uniaxial compression corresponds to experiments 7, 
with reasonable locking stretch and strain hardening 
slope. Before these final values were chosen, the effects 
of the amorphous phase material constants (a, N, C R) on 
the macroscopic stress-strain response were studied 
parametrically, based on the uniaxial compression test, 
to obtain the best fit. An account of this can be found 
elsewhere ~4. 

PREDICTED RESULTS AND COMPARISON 
WITH EXPERIMENTS 

Modes of straining 
We have applied the proposed composite model to 

simulate stress-strain response and texture evolution in 
initially isotropic HDPE for several different modes of 
straining. Predicted results are compared with both the 
experimental results of previous investigators and with 
the results of our own recent extensive experiments. The 
different modes of straining that were considered are 
constant strain rate uniaxial tension and compression, 
simple shear and plane strain compression. According to 
their deformation patterns, these modes of straining can 
be divided into two major classes: convergent molecular 
flow, with only one principal stretch greater than unity, 
such as in uniaxial tension; and divergent molecular flow, 
with two principal stretches greater than unity, such as 
in uniaxial compression. Intermediate to these classes are 
cases of neutral molecular flow, with one principal stretch 
remaining unity, such as plane strain compression and 
simple shear. 

The common denominator of these two classes of 
deformation is that in convergent molecular flow, as well 
as in neutral flow, a process of fragmentation of stretched 
lamellae or stretching out of lamellae into microfibrils 
ultimately occurs in the course of deformation. In the 
case of tension and plane strain compression (also rolling) 
this results in a major restructuring of crystalline and 
amorphous domain morphology into a new long period 
and the establishment of a new family of lamellae. In 
simple shear the replacement of stretched out lamellae 
into microfibrils is not followed by a restructuring to 
form a new long period. The reasons for this are not 
clear lo. These phenomena introduce into the deformation 
important additional considerations such as interface 

migration and redistribution of packing defects among 
chains. Such restructuring is not detected in the latter 
class of divergent deformation. In the following sections, 
we first present the predicted results and then compare 
them with experimental observations for the class of 
divergent molecular flow, followed by those for the 
class of convergent molecular flow, up to the point 
where the above-mentioned morphological restructuring 
phenomena occur. 

Uniaxial compression 
The first application is the prediction of the stress-strain 

response and texture evolution in HDPE deformed 
under constant strain rate uniaxial compression (with 
/3eq/po = 1). The calculated equivalent macroscopic stress, 
#=q, is plotted versus equivalent macroscopic strain, 
~eq = f~ /~©q dt in Figure 6. Also shown in Figure 6 are the 
corresponding curves for the other deformations, which 
will be discussed further below. As can be seen from 
Figure 6, our predicted compressive curve compares well 
with the experimental data obtained by Bartczak et al. s 
(to which it was fitted), including the level of locking 
stretch and strain hardening slope. Parenthetically, we 
note that the predicted stress-strain curves in Figure 6 
show a jerky behaviour. The frequent, short stress drops 
result from the Sachs inclusion model when, during the 
course of deformation, certain composite inclusions, by 
assumption subject to inclusion average stress S ~= S, are 
momentarily caught in 'soft' orientations. Such model 
inclusions tend to experience local 'runaway' deformation 
rate until their accumulating local deformation and 
accompanying rotation and amorphous phase orientation 
hardening naturally rectify the soft condition. Meanwhile, 
however, the accelerated macroscopic volume average 
deformation rate, in conjunction with the rate sensitivity 
of flow, results in the stress drops. As discussed 
elsewhere 1., we have successfully rectified this relatively 
benign aberration by the introduction of a more 
sophisticated self-consistent-like model which is consider- 
ably more difficult to implement; however, overall results 
of the more elaborate model do not differ much from the 

10 

~eq 
To 

' ' ' ' ] ' ' ' ' I ' ' 0 '  ' I ' ' ' ' 

: Plane strain 
/ compression 

• Bartczak et al. [8] : t/t a~ 
o Galeski et al. [11] d 

d i 
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~ o  '~] t \ 
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F i g u r e  6 Normalized equivalent macroscopic stress, 6eq/TO, as a 
function of the equivalent macroscopic strain, g~q, for initially isotropic 
HDPE subject to different modes of straining. Experimental data points 
shown were normalized using 3o = 7.8 MPa (see refs 8 and 11) 
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Figure 7 Predicted crystallographic textures, morphological texture 
(lamellae normals) and the amorphous phase molecular alignment for 
HDPE subject to uniaxial compression at ~q = 1.0. Pole figure labelled 
'molecules' shows axes of maximum principal stretch in amorphous 
domains of each inclusion. (Compressive direction is along the 3-axis) 

smoothed results of the Sachs inclusion model considered 
here. 

Fioures 7 and 8 give the predicted crystallographic 
textures for equivalent strains of 1.0 and 1.8, respectively. 
In each pole figure, the axis perpendicular to the 
projection plane is the compression direction. An equal 
area stereographic projection is used for each pole figure. 
Note that since the initially chosen 244 inclusions give 
relatively sparse information in the pole figures for 
strained material, the pole concentration was enriched 
by reflecting every pole point with respect to the central 
point in the pole plots, which for this deformation mode 
should be a centre of symmetry. Figures 7 and 8 show 
that with increasing compressive strain, the poles of the 
(200) planes (the planes with the lowest chain slip 
resistance) migrate toward the compression direction, and 
that the poles of the (002) and (020) planes tend to align 
circumferentially uniformly in the radial direction. 
However, in both cases, the final goals - -  i.e. for the (200) 
poles to reach the compression axis and for the (002) and 
(020) poles to reach the radial direction - -  are not 
attained. The (011) planes also spread towards the radial 
direction and evacuate the centre of the pole figure 
(compression direction) as strain increases. The predicted 
morphological texture (distribution of the lamellar 
normals) and macromolecular texture (distribution of 
orientations of maximum principal stretch within the 
amorphous layers) are also plotted in Figures 7 and 8. 
With increasing strain, the normals to the crystalline/ 

amorphous interfaces strongly congregate around the 
compression axis, and molecular segment alignment in 
the amorphous domains becomes strongly focused 
toward the radial direction. 

At large macroscopic strain, predicted crystallographic 
textures clearly show two general groups of crystals: a 
larger group with a-axes oriented ~ 20-30 ° away from 
the compression direction and both b- and c-axes oriented 
toward the radial direction; and a smaller group 
having their b-axes oriented .-~20-30 ° away from the 
compression direction and both a- and c-axes oriented 
toward the radial direction. This texture agrees with the 
experimental observations of Krause and Hosford 3s. 

Detailed experimental studies of uniaxial compression 
on HDPE were also made by Bartczak et al. 8. 
Figures 9a-c show the wide-angle X-ray scattering 
(WAXS) intensity profiles of the (200), (020) and (011) 
planes as a function of altitude angle measured away 
from the compression direction for a number of 
equivalent macroscopic strain levels. The experimental 
results of Figure 9a confirm the model predictions that 
the scattered intensity of the (200) planes shows a peak 
at an altitude angle ~ 25 ° away from the compression 
direction, while those of Figure 9c show that the intensity 
of the (011) planes generally increases as the altitude angle 
increases away from the compression direction. Between 
strains of 1.O~<~q~< 1.8, the model (011) pole figures in 
Figures 7 and 8 show a clearing of the region of altitude 
angles <35 °, the development of a monotonically 

(002) 
2 

(2oo) 

++ ++.+ 

+ + + - ~  + 

+++ , : , + :  ÷: + 

(020) (o11) 

- +  + + + + ~  
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Normals Molecules 

-~eq ~_  1 . 8  

Figure 8 Predicted crystallographic textures, morphological texture 
and the amorphous phase molecular alignment for HDPE subject to 
uniaxial compression at g:q = 1.8. (Compressive direction is along the 
3-axis) 
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Figure 10 Plots of SAXS patterns viewed from the radial direction 
for g~q values of (a) 0, (b) 0.35, (c) 0.82 and (d) 1.86 (see ref. 8). Vertical 
arrows in (a) indicate uniaxial compression loading direction 

increasing intensity within 35-70 ° altitude, where a weak 
peak appears, and a filling-in of the region with altitude 
> 70 °. These features are in remarkable agreement with 
experimental trends shown in Figure 9c. At the highest 
strains, the scattered intensity of the (020) planes in 
Figure 9b shows a broad bimodal distribution. These 
results are consistent with the numerical predictions that 
there are two groups of crystal orientation 38, a conclusion 
which is especially evident in the (020) pole figure of 
Figure 7 at ~q = 1.0. It is difficult to collect direct WAXS 
measurements of the (002) planes because of the very low 
signal-to-noise ratio for the (002) diffraction peak 8. 
However, the orientation of the (002) poles (or chain 
directions) may be deduced from either (200) and (020) 
pole figures or from the pole figures for (011) and (020) 
planes. Experimental results support the prediction that 
the (002) pole of sheared crystalline lamellae progressively 
aligns in the directions of divergent radial flow. 

The monotonic migration of lamellar normals toward 
the compression axis predicted in Figures 7 and 8 is best 
shown experimentally in the small-angle X-ray scattering 
(SAXS) patterns of Bartczak et al. 8. Figure 10 shows the 
SAXS patterns of the deformed material viewed from a 
radial direction. Figure lOa shows the initial isotropic 
SAXS (uniform ring) pattern of the undeformed sample. 
The uniform radial distribution of intensity reflects the 
distribution of long period spacing, or lamellar thickness. 
At an equivalent strain of 0.35 (Figure lOb), a distinct 
clustering of the SAXS intensity in the region closer to 
the compression direction is discernible, as well as a 
perceptible outward motion of the maximum of the 
intensity peak. This clustering of lamellae sharpens 
further as an equivalent strain of 0.82 (Figure lOc) is 
reached, where a definite congregation of the lamellar 
normals has taken shape in the compression direction 
region, with a further outward motion of the intensity 
peak, indicating continued compression-induced thinning 
of the planar lamellae. Finally, in Figure lOd, at an 
equivalent strain of 1.86, the location of the intensity 

maximum has moved out much further, but the overall 
scattering has also decreased, indicating further thinning 
of the lamellae, with lamellar normals now being aligned 
predominantly parallel to the compression direction, but 
showing a larger variation in thickness and becoming 
less regular. 

Idealized SAXS patterns of deformed HDPE can be 
constructed numerically at each stage of deformation 
based on the calculated orientation of lamellar normals, 
n ~, and corresponding lamellar thicknesses of the 244 
composite inclusions. In the numerical construction 
of the SAXS pattern, each composite inclusion is 
represented by two centrally symmetric diffraction points 
in a polar coordinate plane with the radial distance of 
the points from the origin proportional to the reciprocal 
of the lamellar thickness. The angle of the point in the 
synthesized SAXS pattern is in the same direction 
as the projection of the lamellar normal on the plane 
perpendicular to the direction of viewing (or incident 
beam). Because all computational inclusions were initially 
of identical thickness, the numerical SAXS pattern at zero 
strain would show all points at equal radius from the 
origin, in contrast with the distribution of long periods 
experimentally noted in Figure lOa. This lack of initial 
thickness distribution in the computational results must 
be kept in mind when comparing the predicted and 
experimental SAXS patterns. Figure 11 shows the 
numerically constructed SAXS patterns viewed from a 
radial direction of the uniaxial compression test for 
macroscopic equivalent strains of 0.5, 1.0 and 1.5, 
respectively. Both the numerically constructed and the 
experimental SAXS patterns indicate that, as strain 
increases, the SAXS images change progressively from a 
uniform ring pattern to an elliptic pattern with the longer 
axis aligned with the compression direction, to an 
eventual two-point pattern. This change in SAXS 
patterns implies that the lamellar normals migrate 
toward the compression direction (as is also evident in 
Figures 7 and 8) and that the lamellae that are oriented 
perpendicular to the compression direction show both a 
decrease in thickness and an increasing spread in this 
thickness. The number of lamellae oriented parallel to 
the compression direction (normals perpendicular to 

LD 

0.5 ~ 1.0 

+ 

1.5 

+ 

Figure 11 Plots of numerically constructed SAXS patterns for uniaxial 
compression, viewed from a radial direction, for g'q values of 0.5, 1.0 
and 1.5 
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Figure 12 (a) Equivalent phase-volume-averaged stress (0 ", amorphous; 
#~, crystalline), normalized by z o, as functions of ~q; and (b) the 
equivalent phase-volume-averaged strain rate (/)', amorphous; /)  °, 
crystalline), normalized by the applied macroscopic strain rate, as 
functions of ~q in unaxial compression 

compression direction) monotonically decreases, while 
their thickness progressively increases. These features are 
all in very good agreement with the experimental 
observations of Bartczak et al. s, shown in Figure 10. 

In order to gain more understanding regarding the 
roles of the crystalline and amorphous phases in the 
texture evolution, the equivalent phase-volume-averaged 
stretching and stress are calculated for each phase. The 
equivalent phase-volume-averaged strain rate and stress 
in the crystalline domains are defined as: 

2 ¢ c D~ = x/~L D uJL D uJ (16a) 

6c = x/a [ S~iJL S~iJ (16b) 

where I_'J denotes the volume average over the domain 
occupied by the designated phase. The equivalent 
phase-volume-averaged strain rate and stress in the 
amorphous domains, /5" and 0~, can be analogously 
defined. The normalized equivalent phase-volume-averaged 
strain rate and stress obtained in this manner for each 
domain are plotted in Figure 12 versus g~q. At low strain, 
the amorphous phase carries less stress and deforms 
considerably more rapidly than the crystalline phase. As 
deformation progresses, the amorphous phase hardens 
due to network locking, resulting in near equalization 
of the equivalent phase-volume-averaged strain rates. 
Strong amorphous phase hardening is seen in Figure 12a 
at ~-cq ~ 1.5; in Figure 6, rapid macroscopic hardening in 
uniaxial compression begins at a similar point. Similarly, 
the relative magnitude of crystalline phase deformation 
rate steadily increases with increasing large strain, 
comparing well with the considerable sharpening of 

crystallographic texture, evident in Figures 7 and 8. 
Referring to the crystallographic texture shown in 
Figures 7 and 8, we interpret the behaviour as resulting 
from a competition of chain slip and shearing of 
amorphous domains that allows the (200) poles to reach 
a 'stand-off" orientation away from the compression 
direction as shown in both experimental observation and 
numerical simulation. 

Simple shear 
In the case of constant strain rate simple shear (with 

shear strain rate ~/7o = 1), the calculated plot of #cq versus 
~q is included in Figure 6. The textural hardening 
developed in simple shear is quite small, in agreement 
with experimental observations 9'1°. However, it is 
important to point out that the predicted equivalent 
stress-strain curve exhibits more strain hardening than 
that reported by G'Sell et al. 9. This is in part because 
G'Sell et al. 9 neglected the contribution due to (non-zero) 
macroscopic normal stresses, and set the equivalent 
macroscopic stress in simple shear equal to x//3~, where 

is the macroscopically measured shear stress. The 
calculated values of x//3f and 0 eq in simple shear are 
plotted versus ~q in Figure 13. The neglected contribution 
of macroscopic normal stresses to 0 cq is not negligible 
when ~q is large. By comparing the curve of calculated 
x//3f versus ~q with the experimental results reported in 
G'Sell et al. 9, good qualitative agreement is obtained. 

Figures 14 and 15 show the predicted crystallographic 
texture, the distribution of lamellar normals, and 
the molecular alignment in the amorphous phase at 
simple shear deformations corresponding to ~q= 1.0 
and 2.0, respectively (simple shear strain ~7=x/~ and 
2x//3, respectively). In each pole figure, the neutral x3 
direction is perpendicular to the projection plane, and 
the direction of the imposed shear is marked. Upon 
increasing strain, the (002) poles (or chain axes) cluster 
and rotate toward the direction of maximum stretch 
(which asymptotically approaches the shear direction), 
and the (200) poles tend to concentrate around the 
in-plane direction perpendicular to the direction of 

1 0  ' , , , i , , , , i , , , , i , , , , 

5 

0 

Z 

u G'Sell et aJ. [9] 

v1"d~'o ~'V~'o 

ro = 7 .8MPa 

0 i i i i I i i , , I , , I r I i i I i 

0 . 0  0.5 t.O 13 2.0 
~q 

Figure 13 Calculated values of ,~/3f/To and #=q/z o in simple shear, as 
functions of ~q. Experimental data points shown were normalized using 
r o = 7.8 MPa  
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Figure 14 Predicted crystallographic textures, morphological texture 
(lamellae normals) and the amorphous phase molecular alignment for 
HDPE subject to simple shear at ~q = 1.0. Arrows indicate sense of 
applied simple shearing 

maximum stretch. The orientation of maximum stretch 
in the amorphous domains rotates toward the direction 
of maximum macroscopic stretch in coincidence with the 
c-axes of the crystalline phase. The lamellar normals n I 
rotate toward the opposite and orthogonal in-plane 
direction, in coincidence with the a-axes of the crystalline 
phase. According to the predicted crystallographic 
texture, we conclude that the evolution of the texture 
under simple shear allows most of the deformation, 
within the crystalline phase, to be accommodated by 
the lowest resistance (100)[001] chain slip system, 
producing negligible textural hardening. Such textural 
interpretations of limited hardening in simple shear were 
made previously by Parks and Ahzi 21. The present model 
also suggests that in simple shear, the amorphous layers 
do not continue to shear indefinitely. 

Figure 16 shows the WAXS patterns of the (002) and 
(200) plane reflections of samples subjected to simple 
shear strains of ~ = 1.8 (g~q = 1.04) and ~ = 3.0 (g~q = 1.73), 
as obtained by Bartczak et alJ °. Comparison of these 
intensity patterns of the pole figures with the predicted 
patterns given in Figures 14 and 15 shows very good 
general agreement. 

The lamellar morphology can be investigated by the 
SAXS technique. The results of the SAXS patterns 
obtained by Bartczak et alJ ° with the incident beam 
parallel to the x3-axis (i.e. perpendicular to the shear 
plane) are shown in Figure 17 for ~= 1.8, 3.0 and 4.3 
(g~q = 1.04, 1.73 and 2.48), respectively. The corresponding 
numerically constructed SAXS patterns for g~q = 1.0, 1.5 
and 2.0 are shown in Figure 18. It is evident that 
the predicted SAXS patterns are in good qualitative 
agreement with the experimental results. As strain 
increases, the SAXS patterns change smoothly from a 
uniform ring pattern to a tilted diffused two-point pattern 
with the long axis of the pattern aligned near the 

in-plane direction perpendicular to the shearing direction. 
Both predictions and experiments confirm that the 
lamellar normals rotate toward the in-plane direction 
perpendicular to the shear direction, and that the 
thickness of deformed lamellae decreases. 

At very large strains, exceeding 2.0 the sheared lamellae 
become unravelled and as a result a fibre texture develops 
resembling that in uniaxial tension. Whether this is an 
unavoidable kinematic necessity or an artifact of the 
straining arrangement is unclear 1°. The effects, of course, 
have not been considered in our model. 

Uniaxial tension 

For the constant strain rate uniaxial tension test (with 
Deq/~ 0 = 1), the calculated equivalent stress-strain curve is 
included in Figure 6. In an actual tensile test, deformation 
instabilities (e.g. necking, cavitation) will occur during 
the deformation as'a9. Thus, when amorphous material 
constants are chosen to match uniaxial compression data, 
where no deformation instability has been reported s, the 
predicted macroscopic tensile response in a simulation 
which neglects cavitation tends to exceed macroscopic 
experimental measurements of material resistance. Indeed, 
the calculated stress-strain response in uniaxial tension 
exhibits somewhat higher strain hardening slope and 
smaller locking stretch than is experimentally observed 7. 
As demonstrated in reference 14, the shape of the 
predicted stress-strain curve can be modified by adjusting 
the parameters N and cR; however, the patterns of the 
texture are insensitive to those parameters. In any event, 
in accord with experimental observations, the predicted 
locking strain in tension is far less than in compression, 
and terminal strain hardening is much steeper. The clean 
separation of the stress-strain behaviour of the tension 
and plane strain compression behaviour from those in 
uniaxial compression and simple shear is a direct 
demonstration of the difference between convergent and 
divergent flow behaviour mentioned. 

Molecules 

I I 
(2oo) 

~++++ 

Normals 

Plastic deformation and texture evolution in HDPE." B. J. Lee et al. 

~-eq = 2 . 0  

Figure 15 Predicted crystallographic textures, morphological texture 
and the amorphous phase molecular alignment for HDPE subject to 
simple shear at ~" = 2.0 
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Figure 16 Plots of the WAXS intensities of the diffraction by (200) and (002) planes of HDPE 
subject to simple shear for: (a) ~ = 1.8; (b) ~7 = 3.0 (see ref. 10) 

~ =  1.8 

l i  2 xl 

~=3.0  

~=4.3  

Figure 17 Plots of SAXS patterns viewed from the neutral direction 
(or x3-axis) for simple shears ~ of magnitudes 1.8, 3.0 and 4.3 (see ref. 10) 

Figures 19 and 20 show the predicted textures 
at g~q=0.8 and 1.3. In each pole figure, the axis 
perpendicular to the projection plane is the tensile 
direction. As the remote strain increases, the pole 
of the (002) planes rotates toward the tensile direction, 
and the (200) texture tends toward a circumferentially 
uniform one near the radial direction. The lamellar 
normals point predominantly in the radial direction, 

••• = 2.0 

Figure 18 Plots of numerically constructed SAXS patterns viewed 
from the neutral direction (or x3-axis) for simple shears ~ of magnitudes 
1.0, 1.5 and 2.0 

while the amorphous phase direction of maximum stretch 
aligns with the macroscopic extension direction. 

For macroscopic tensile loading, the normalized 
equivalent volume-averaged strain rate and stress of each 
domain are plotted in Figure 21 versus g~q. Referring to 
the crystallographic textures shown in Figures 19 and 20, 
we conclude that initially, the competition of macroscopic 
deformation accommodation via chain slip and amorphous 
domain shearing does not allow the chain axes to align 
fully with the tensile direction for small strain. However, 
at large strain, after the amorphous phase begins to lock, 
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(00z) (zoo) 
2 9. 

direction. However, they are prevented from reaching 
their goal by some of the lamellae undergoing chain slip. 
The mean thickness of deformed lamellae decreases while 
the variation in thickness increases. Some of the few 
lamellae whose normals remain near the loading direction 
tend to thicken, however. This expected SAXS patterns 
evolution presupposes no long period restructuring, 
which has been observed at large plane strain compression ~ 
and should also occur in the mechanically equivalent 
plane strain tension. We discuss this point further in the 
next section and in the Discussion section. 

Normals Molecules 
2 2 

1 

~q = 0 .8  

Figure 19 Predicted crystallographic textures, morphological texture 
(lamellae normals) and the amorphous phase molecular alignment for 
HDPE subject to uniaxial tension at g~q = 0.8. (Tensile direction is along 
the 3-axis) 
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Figure 20 Predicted crystallographic textures, morphological texture 
and the amorphous phase molecular alignment for HDPE subject to 
uniaxial tension at Yq = 1.3. (Tensile direction is along the 3-axis) 

deformation is transferred principally to the crystalline 
regions, where chain slip sharpens the texture. 

The numerically constructed SAXS patterns as viewed 
from the radial direction are shown in Figure 22 for 
macroscopic strains of 0.4, 0.8 and 1.2. As strain increases, 
the SAXS patterns change from a uniform ring pattern 
to a four-point pattern oriented in the radial direction. 
This implies that the lamcllae tend to align with the tensile 
direction, with their normals rotating toward the radial 

2 Amorphous 
, ' ' ~ f f '  i ~ '1 

Crystalline 

0 i i i i I i i i h I i i , i 

0.0 0.5 1.0 1.5 ~eq 

Figure 21 (a) Equivalent phase-volume-averaged stress normalized by 
%, in both phases, as functions of g~q; (b) equivalent phase-volume- 
averaged strain rate normalized by the applied macroscopic strain rate, 
in both phases, as functions of g~q for uniaxial tension 

LD 

t 
~ * ~ .  ~q = 0.4 

+ 
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+ + 

+ + + + +  ~~ eq = 0.8 

~-eq = 1.2 

Figure 22 Plots of numerically constructed SAXS patterns viewed 
from a radial direction for g~q of 0.4, 0.8 and 1.2 in uniaxial tension 
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Figure 23 Predicted crystallographic textures, morphological texture 
(lamellae normals) and the amorphous phase molecular alignment for 
HDPE subject to plane strain compression at ~*q = 0.8. (Flow direction 
is along the 3-axis) 

Due to the known profusion of both local (cavitation) 
and global (necking) deformation instabilities that afflict 
the tension test, we did not perform serious experiments 
on HDPE in uniaxial tension. However, comparing 
predicted crystallographic textures with experimental 
results obtained by Krause and Hosford 3s, a reasonable 
agreement is obtained for the crystallographic textures. 
Experimental observations as also confirm that as strain 
increases, the cluster of chain axes gradually rotates 
toward the tension direction, as shown in Figures 19 and 
20. We note in passing that by using axisymmetric 
extrusion, cavitation should be suppressed, with only 
minor changes in resulting texture, as compared to 
uniaxial tension, and is a suggested mode for further 
experimental study of tensile flow. 

Plane strain compression 
A final test consists of simulating plane strain 

compression as it develops in a channel-die of HDPE. 
The channel-die compression experiment was performed 
by Galeski et al.11 at a temperature of 80°C. In order to 
compare properly with the experimental observations, 
the (common) strain-rate sensitivity exponent n, the 
relative resistance of the slip systems in the crystalline 
phase of HDPE and the material constants in the 
amorphous phase (a, N and C a) should be chosen 
accordingly. Due to insufficient experimental information 
on HDPE at different temperatures, the same set of 
material constants used in the previous tests is employed 
to simulate the constant strain rate plane strain 
compression test of HDPE. 

Our prediction of ~eq versus F q at room temperature 
is included in Figure 6 (with /)eq/~O=l ). Texture 
evolution is shown in Figures 23 and 24 for Fq= 0.8 and 
1.3, respectively. In each pole figure, the direction 
perpendicular to the projection plane is the flow direction. 

The loading direction and the constraint direction are 
denoted by LD and CD, respectively. In these figures 
there is a monotonic migration of the (200) poles toward 
the loading direction and a corresponding monotonic 
migration of the (002) poles toward the flow direction. 
In both cases, however, full alignment is stifled, never 
quite reaching the geometrical goals. The orientations of 
directions of maximum stretch in the amorphous phase 
show strong alignment in the flow direction. As in the 
previous cases of uniaxial tension/compression and 
simple shear, the lamellar normals and the chain axes 
rotate in opposite directions. The simulations predict a 
monotonic migration of the lamellar normals toward the 
loading direction. 

The numerically constructed SAXS patterns at 
equivalent macroscopic strain levels of 0.4, 0.8 and 1.2, 
as viewed from the constraint direction (the neutral 
direction for plane strain compression) and the flow 
direction are shown in Figures 25a and b, respectively. 
As strain increases, the predicted SAXS patterns viewed 
from the constraint direction change progressively from 
a uniform ring pattern to a four-point pattern, while those 
viewed from the flow direction develop a two-point 
pattern. At large strain, the SAXS patterns viewed from 
both directions predict that the lamellar normals rotate 
toward the loading direction, with decreasing lamellar 
thickness. 

Plane strain compression and uniaxial tension belong 
to a class of macroscopically irrotational large strain 
deformations which differ quite significantly in their 
consequences from uniaxial compression and simple 
shear. To highlight these differences we compare here the 
predictions of our simulation of channel-die compression 
with the experimental results of Galeski et al.l 1. Figures 
26a and 27a show experimental pole figure patterns of 
the (002) and (200) planes at g~q=0.92 and 1.86, 
respectively. The orientations of normals to segments of 

(002) (200) 
LD LD 

CD CD 

Normals 
LD 

+ +,~+ +y/ 

Molecules 
LD 

CD 

~-eq = 1.3 
Figure 24 Predicted crystallographic textures, morphological texture 
and the amorphous phase molecular alignment for HDPE subject to 
plane strain compression at F q = 1.3. (Flow direction is along the 3-axis) 
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Figure 25 Plots of numerically constructed SAXS patterns viewed 
from (a) the constraint direction and (b) the flow direction for ~q of 
0.4, 0.8 and 1.2 in plane strain compression 

macromolecular chain in the amorphous domain obtained 
from an X-ray peak deconvolution process discussed in 
detail by Galeski et al. ~ are shown in Figures 26b and 
27b. In these figures, the view is from the flow direction. 
Information on the clustering of the lamellar normals is 
given in Figure 28 in the form of the associated SAXS 
patterns viewing the deformed material from the constraint 
direction and the flow direction, respectively, for four 
equivalent strain levels of 0.44, 0.92, 1.15 and 1.86. 

In Figure 26a, for ~'q=0.92, the (200) poles have 
distinctly rotated toward the loading direction and the 
(002) poles have rotated toward the flow direction. Both 
of these rotations have reached a position roughly 20 ° 
from their ultimate target, very much like the trend shown 
in the simulation results of Figures 23 and 24. In 
Figure 27a, at ~.eq = 1.86, a high degree of crystallographic 
orientation is obtained, producing a texture resembling 
a monocrystal, with (002) poles oriented in the flow 
direction and (200) poles oriented in the loading direction. 
Moreover, from Figures 26b and 27b, the orientation of 
the normals to macromolecular chain segments in the 
amorphous regions rotate perpendicular to the flow 
direction and thus the chains in the amorphous phase 
form an orientation parallel to the flow direction. This 
is in good agreement with the simulation results shown 
in Figures 23 and 24. 

The experimental SAXS patterns in Figure 28 for 
g~q --- 0.44, 0.92 and 1.15 show that the lamellar normals 
have very discernibly begun to cluster around the loading 
direction, as predicted in Figure 25 (also Figures 23 and 
24). The progressive thinning of the lamellae is also 
confirmed by the SAXS patterns. In Figure 28a, the SAXS 
patterns viewed from the constraint direction show a 
continuous change from a uniform ring into an elongated 
elliptic shape with a visible four-point pattern. On the 
other hand, the SAXS patterns viewed from the flow 
direction change continuously from a uniform ring into 
an elongated ellipse with practically a two-point pattern. 
These features are qualitatively in excellent agreement 
with the simulation results of Figure 25. 

The SAXS patterns in Figure 28a show that beyond 
g~q= 1.15, some new events begin to occur. The clear 
clustering of the lamellar normals has distinctly bifurcated 
away from the loading direction and toward the flow 
direction. As g~q is increased to 1.86, the four-point pattern 

viewed from the constraint direction transforms into two 
arcs normal to the flow direction. The two-point pattern 
viewed from the flow direction, shown in Figure 28b, 
is now much better outlined. These data indicate that the 
lamellae were oriented first preferentially perpendicular 
to the loading direction, as predicted by the model, and 
then, for ~q> 1.15, the SAXS patterns viewed from the 
flow direction become progressively fainter, showing a 
gradual elimination of those lamellae previously oriented 
with their normals parallel to the loading direction. The 
SAXS pattern for ~eq = 1.86 in Figure 28a shows evidence 
for restructuring of a new set of lamellae and amorphous 
regions, i.e. a new long period. Thus the lamellar normals 
in the final, fully textured material are nearly parallel 
with the flow direction, or the direction of principal 
molecular alignment. The formation of these new 
lamellae, as a major morphological restructuring process, 
had not been fully elucidated until recently 11. Galeski 
et al. 11 proposed a scenario based on their TEM 
observations and the SAXS results to explain how this 
newly evolving amorphous material may be topologically 
related to the initial amorphous material. These 
restructuring processes were not incorporated into the 
current model, thus limiting the predictions to deformation 
to equivalent strains less than the experimentally 
observed onset of restructuring. However, the predictions 
are in very good agreement with the experiments up to 
that point. 

DISCUSSION 

Development of deformation induced texture in semi- 
crystalline polymers resulting in large stiffness and 
strength anisotropies has been known for decades (for 
reviews see refs 40 and 41). The technological importance 
of these phenomena in applications involving production 
of high modulus fibres and ribbons and precursors for 
high modulus carbon fibre is widely appreciated. In view 
of this importance there has been intense experimental 
research activity since the late 1960s and early 1970s in 
the study of the mechanisms of the morphological 
alterations that produce the texture (for a review see 
ref. 42). With few exceptions 43'a4, this early research relied 
heavily on the uniaxial tension experiment and a 
multitude of imaginative micro-experiments carried out 
on electron transparent thin films, studied by means of 
TEM. These experiments have produced a bewildering 
collection of deformation features. Many of these 
experiments have been invaluable in clarifying the crystal 
structure and forms of crystallization of long chain 
polymers, as well as how these chain molecular lamellar 
crystals are associated with a ubiquitous amorphous 
phase. On the other hand, they were instrumental in 
establishing a distorted picture of how the deformation 
evolved and resulted in texture. Since most investigations 
concentrated on the details of the tension experiment, 
which undergoes a variety of inessential and often 
confusing deformation instabilities, it was believed that 
large strain texture development necessitated a stage of 
release of interlamellar constraints by cavitation, which 
then permitted the unravelling of lamellae followed by 
unhindered chain alignment, in a process referred to as 
micronecking 39. The early rolling experiments of Keller 
and Pope 43 and channel-die compression experiments of 
Young and Bowden 44 and the much more detailed recent 
experiments of Galeski et al. 11, also in plane strain 
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Figure 26 Plots of (a) the WAXS intensities of the diffraction by (002) and (200) planes and (b) the orientation of normals to segments of 
macromolecular chains in the amorphous region obtained from an X-ray peak deconvolution process of HDPE subjected to plane strain compression 
at gq=0.92 (see ref. 11) 

compression, have all demonstrated that the same very 
high degree of texture evolution, molecular alignment and 
long-period restructuring occurs in large strain compression 
flow as in uniaxial tension - -  but without the cavitation 
or so-called micronecking stage. How this occurs quite 
naturally in the course of large strain extensional flow 
through eventual repeated pinch-off in the stretched 
lamellae has been discussed in detail with ample 
TEM, WAXS and SAXS evidence ~.  This emerging 
mechanistic understanding has established the point 

of view that development of deformation induced 
texture in semicrystalline polymers can be described 
by a continuous succession of volume preserving shear 
transformations occurring in the crystalline lamellae 
and the associated amorphous layers compatibly. This 
is the approach which we have developed in a series 
of computational models 14'21,31,32 for HDPE,  in 
association with our experimental studies of this 
phenomenon 6's'1°'~1 in this material. In this paper we 
have compared the results of this computer simulation 
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Figure 27 Plots of (a) the WAXS intensities of the diffraction by (002) and (200) planes and (b) the orientation of normals to segments of 
macromolecular chains in the amorphous region obtained from an X-ray peak deconvolution process of HDPE subjected to plane strain compression 
at Yq= 1.86 (see ref. 11) 

with these experimental results. While the present 
computer simulation has been specifically tailored to the 
orthorhombic crystal structure of HDPE, the developed 
methodology can be readily adapted to the corresponding 
deformation induced texturing of monoclinic Nylon 64s 
and triclinic PET 46, and any other semicrystalline 
aggregation, the initial morphology and the deformation 
mechanisms of which can be definitively stated as initial 
conditions and constitutive behaviour given. 

As we have demonstrated above, our computer model 

has a high degree of precision in the simulation of both 
the evolving plastic resistances and deformation induced 
textures in the 'divergent' flow modes of straining of 
uniaxial compression and simple shear where no long 
period restructuring by lamellar pinch-off has been 
observed. In the case of plane strain compression by 
means of channel-die extrusion, our simulation is able to 
follow the evolution of texture in all respects up to the 
occurrence of the long period restructuring at an 
equivalent strain of > 1.15. Above this critical strain our 
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Figure 28 Plots of SAXS patterns viewing the material from (a) the constraint direction and 
(b) the flow direction for g~q of 0.44, 0.92, 1.15 and 1.86 in plane strain compression (see ref. 11) 

simulation is still able to predict the crystallographic 
texture correctly, but does not predict the further 
evolution of the lamellar morphology, since apparently 
this involves lamella pinch-off and extensive interface 
migration to reduce stored interfacial free energy. Such 
processes could be simulated separately but this has not 
yet been done. 

Simulation of deformation textures in polycrystalline 
face centred cubic and body centred cubic metals has 
been done by numerous investigators since Sachs 27 
and Taylor 28 pointed out the basic geometrical and 
operational requirements (for a recent example see 
ref. 47). In these simulations, in all cases, the Taylor 
requirements of availability of five independent slip 
systems is always satisfied, and there are no important 
kinematical constraints that need to be dealt with. In 
semicrystalline polymers with molecular chain crystalline 
lamellae, this requirement is not satisfied because of the 
relative inextensibility of the lamellae in the chain 
direction. Thus, in the deformation oflamellar aggregates, 
those lamellae which are in orientations where they need 
to respond by straining in the chain direction, will act 
as rigid inclusions. This severe constraint causes the usual 
Taylor-type models based on an affine connection 
between the local and global flow fields to break down. 
To cope with this constraint we have developed 
special operational approaches for both Taylor-type 
models 21'31'32 and Sachs-type models 1'~, which amount 
to the introduction of local hybrid procedures to 
overcome the problem. 

CONCLUSIONS 

We employed a newly developed micromechanically 
based composite model 14 to study plastic deformation 
and texture evolution in initially isotropic HDPE subject 
to uniaxial tension and compression, simple shear and 
plane strain compression. The predicted results agree 
with the experimental observations of macroscopic 
stress-strain behaviour and texture evolution in nearly 
all aspects. In the case of channel-die compression, the 
predicted morphological texture for large strain was in 
some contradiction with existing experimental results. 
The contradiction arises from a long period restructuring 

process that appears in large strain extensional flow due 
to extensive lamellae pinch-off. This process, which has 
been studied in detail by us and reported elsewhere 11, 
has not been incorporated into the present simulation. 
Nevertheless, our model, even lacking this restructuring, 
has sharpened the focus on the complex processes of 
texture development. The present micromechanicaUy 
based composite model can also be applied to study 
plastic deformation and texture evolution in other 
initially isotropic semicrystalline polymers, e.g. PET and 
Nylon 6, as well as in initially oriented semicrystalline 
polymers. 
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